Macrophages, Growth Factors & Cytokines

Kurt Lu, M.D.
Assistant Professor
Department of Dermatology
February 23, 2009
Disclosure

- No commercial interest or bias
- No conflict of interest
- No relevant financial relationships
Participants will be able to:

• Understand the role of macrophages in the wound healing process

• Recognize key growth factors and cytokines involved in wound healing
Physiology of Wound Healing

- Blood clotting
- Exudation/inflammatory phase
 - Macrophages replace PMNs at 48 hours as the principle inflammatory cell
- Proliferation and granulation phase
- Migration/re-epithelialization
- Maturation
Physiology of Wound Healing

- Blood clotting
- Exudation/inflammatory phase

increased vascular permeability

infiltrate of PMNs, platelets, plasma proteins
Recruitment of Inflammatory cells

• Small molecules released by damaged cells
 – ATP, adenosine, uric acid, arachidonic acid derived products, bioactive lipids

• Growth factors released by degranulating platelets
 – EGF, FGF-2, TGF-β, PDGF, VEGF
Recruitment of Inflammatory cells

- Histamine release by neighboring mast cells
- Chemokine release
- Cytokine release
Growth factors and cytokines in wound healing

Stephan Barrientos1,2; Olivera Stojadinovic, MD2; Michael S. Golinko, MD3; Harold Brem, MD3; Marjana Tomic-Canic, PhD2,4

1. University of Rochester School of Medicine and Dentistry, Rochester, New York,
2. Tissue Engineering, Repair and Regeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York,
3. Wound Healing Laboratory, Columbia University College of Physicians and Surgeons, New York, and
4. Department of Dermatology, Weill Medical College of Cornell University, New York

Epidermal Growth Factor
Fibroblast Growth Factor-2
Transforming Growth Factor
Platelet Derived Growth Factor
Vascular Endothelial Growth Factor
Connective Tissue Growth Factor
Pro-Inflammatory Cytokines
Chemokines
TGF-β

- Produced by macrophages, fibroblasts, keratinocytes, and platelets
- Increased in acute wounds and decreased in chronic wounds
- Chemoattractant for monocytes
- Topical TGF-β applied to wounds result in
 - Increased inflammation
 - Angiogenesis and fibrosis
 - Increased matrix deposition

Roberts A.B. et al (1986) PNAS
TGF-β1

- Studies show inhibition of keratinocyte proliferation (during reepithelialization)*
- Other studies show promotion of a migratory keratinocyte phenotype**
- Overexpression of TGF-β1 increases proliferative phenotype of keratinocytes in late stages of wound healing

*Sellheyer K et al (1993) PNAS, Roop Group
**Li Y et al (2006) JID, Woodley Group
More on TGF-β

- Mice with knockout of downstream mediator of TGF-β (Smad-3) have blunted response to TGF-β

More on TGF-β

- Smad-3 knockout mice
 - Faster re-epithelialization of incisional wounds
 - Decreased monocyte infiltration in wounds
 - Increased keratinocyte proliferation
 - Reduced scarring

Excisional wound healing in Smad3 mice

Wound healing depends on underlying tissue support

Arany P R et al. PNAS 2006;103:9250-9255
Inflammatory Cells in Wound Healing

- Platelets
- Neutrophils
- Mast Cells
- Macrophages
Platelets

- Anti-sera to platelets to induce thrombocytopenia results in increased macrophages and T cell
 - No changes
 - In proliferative phase of repair
 - Wound closure
 - Angiogenesis or collagen synthesis

Neutrophils

- Anti-sera studies in the 1970s* and recent neutrophil depletion** show that chemokines released are not essential

- In fact, neutrophils can release factors that impair the healing process

Mast Cells

- Mice deficient of mast cells (WBB6F1/J-kitw/Kit$^{w-}$) show
 - Reduced neutrophils at wound site
 - Normal repair

Macrophages - Classic studies

- Anti-sera and hydrocortisone induced monocytopenia resulted in –
 - Poor clearance of dead and damaged cells, fibrin, and tissue debris
 - Delayed healing

* under sterile conditions
** guinea pig model

Macrophage function in wounds

• Phagocytes
 – Clearing of matrix and cell debris

• Cellular source of numerous factors
 – Cytokines, growth and angiogenic factors
Macrophages function as phagocytes

Macrophages function as phagocytes

Monocytes are activated to become macrophages

quiescent

activated
Macrophages – New Studies

• PU.1 knockout mice lack neutrophils, macrophages, and B cells
 – No delay in wound healing
 – Slight enhanced rates of re-epithelialization
 – Heal without fibrosis
Wound Healing in the PU.1 Null Mouse—Tissue Repair Is Not Dependent on Inflammatory Cells

Paul Martin,¹ ⁴,⁎ Deana D’Souza,¹ ⁴ Julie Martin,¹
Richard Grose,² Lisa Cooper,¹ Rich Maki,³
and Scott R. McKercher³
PU.1 knockout mice

- **decreased** clearance of cell and matrix debris
- do not have neutrophils which themselves comprise a bulk of the debris
- decreased growth factors

- **Caveat**
 - Experiments are in embryo or neonatal pups (day 1-4)
Other considerations

- Wounds under germ-free conditions are heal slower than under normal conditions
 - Commensal bacteria may enhance innate immune processes and wound repair
 - Synergy between TLR and adenosine A2a receptors switches macrophages from pro-inflammatory to an angiogenic phenotype

Tipton J.B. et al (1966)
Chemokines and Macrophages

- Macrophage-inflammatory protein 1 (MIP-1α) knockout have normal wound repair

- Monocyte chemotactic protein 1 (MCP-1) knockout mice have
 - delayed re-epithelialization
 - delayed angiogenesis
 - Reduced collagen synthesis

skin injury and chronic ulcers

Classically activated Mφ
- Good infection control
- Tissue destruction
- TNF-α
- Nitric oxide

Alternatively activated Mφ
- Pro-angiogenic factors
- IL-10
- Collagen precursors

Precursor monocyte
- IL-4, IL-13, or glucocorticoid, immune complex

IFN-γ
- Anti-inflammatory and tissue repair
- Good wound healing

disrupted barrier
Monocyte precursor

Classically activated Macrophages
Pro-inflammatory and cytotoxic

Monocyte precursor

Nitric oxide and citrulline

IL-4 or IL-13 or glucocorticoids

IL-4 or IL-13 or glucocorticoids

IL-10 and IL-1R antagonist

IL-10

Type II-activated Macrophages
Anti-inflammatory and tissue repair

Alternatively activated Macrophages
Anti-inflammatory and tissue repair

Mannose receptor, CD23, CD14, scavenger receptor

IL-10

Mannose receptor, CD86

MHC class II, CD86

Pro-inflammatory cytokines TNF-α, IL-12, IL-1, IL-6

MHC class II, CD86

TNF-α, IL-1, IL-6

IL-10

1st signal - Fc-γR ligation
diverse 2nd signal (TLRs, CD40, CD44)

1st signal - Fc-γR ligation
diverse 2nd signal (TLRs, CD40, CD44)

iNOS2

L-arginine

L-arginine

Nitric oxide and citrulline

Mannose receptor

2nd signal TNF-α

1st signal IFN-γ, PAMPs

Murine macrophage subpopulations
Metabolism of arginine by macrophage subsets

Classically activated Mφ

- IFN-γ
- TNF-α
- IL-1

L-Arginine → L-OH Arginine → NOS2 → Citrulline → Nitric oxide

Alternatively activated Mφ

- IL-4/IL-13
- IL-10
- GM-CSF

L-Arginine → Arginase-1 → L-ornithine → Ornithine aminotransferase

- Polyamines
- Cell proliferation
- Collagen production
- Proline
Thank you